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The microRNA-183/96/182 Cluster 
is Essential for Stereociliary Bundle 
Formation and Function of Cochlear 
Sensory Hair Cells
Ruishuang Geng1,2, David N Furness3, Chithra K Muraleedharan1, Jinsheng Zhang2,4, 
Alain Dabdoub  5, Vincent Lin5 & Shunbin Xu1

The microRNA (miR)-183/96/182 cluster plays important roles in the development and functions of 
sensory organs, including the inner ear. Point-mutations in the seed sequence of miR-96 result in non-
syndromic hearing loss in both mice and humans. However, the lack of a functionally null mutant has 
hampered the evaluation of the cluster’s physiological functions. Here we have characterized a loss-of-
function mutant mouse model (miR-183CGT/GT), in which the miR-183/96/182 cluster gene is inactivated 
by a gene-trap (GT) construct. The homozygous mutant mice show profound congenital hearing loss 
with severe defects in cochlear hair cell (HC) maturation, alignment, hair bundle formation and the 
checkboard-like pattern of the cochlear sensory epithelia. The stereociliary bundles retain an immature 
appearance throughout the cochlea at postnatal day (P) 3 and degenerate soon after. The organ of 
Corti of mutant newborn mice has no functional mechanoelectrical transduction. Several predicted 
target genes of the miR-183/96/182 cluster that are known to play important roles in HC development 
and function, including Clic5, Rdx, Ezr, Rac1, Myo1c, Pvrl3 and Sox2, are upregulated in the cochlea. 
These results suggest that the miR-183/96/182 cluster is essential for stereociliary bundle formation, 
morphogenesis and function of the cochlear HCs.

MicroRNAs (miRNAs) are small, non-coding RNAs of ~22 nucleotides in length that regulate gene expression by 
breakdown and/or translation inhibition of the messenger RNAs (mRNAs) of their downstream target genes1–4. 
miRNAs play important roles in almost all developmental and biological processes investigated thus far1–4. In the 
developing and mature mouse inner ear, hundreds of miRNAs have been found to be expressed in the cochlear 
and vestibular sensory epithelia5–8. They are involved in normal development and homeostasis of the inner ear, 
as well as in inflammatory processes and pathogenesis during noise-induced and age-related hearing loss9–12. 
Although conditional deletion of the miRNA biogenesis enzyme, dicer, demonstrated a vital role of miRNAs 
in inner ear development7,8,13,14, the functions and underlying molecular pathways of individual miRNAs in the 
inner ear and their roles in hearing are still poorly understood.

The miR-183/96/182 cluster was originally identified as a sensory organ-specific miRNA cluster5,7,15–17. In the 
inner ear, expression of this cluster is broadly distributed in the otic vesicle as early as embryonic day (E) 9. In 
later stages of inner ear development, it is confined to the sensory hair cells (HCs) and spiral ganglion cells5,7,18. 
Its expression is highly dynamic with tightly-controlled spatial and temporal patterns along different turns of 
the cochlea from embryonic to adult mouse7, and a radial and longitudinal gradient during chick ear develop-
ment19. Studies in zebrafish suggest that miR-96 is required for hair cell formation20, while double knock-down 
of miR-183 and miR-182 also produces an inhibitory effect on hair cell formation20, suggesting that miR-183 and 
miR-182 are necessary for the normal function of the inner ear. Point mutations in the seed sequence of miR-96 
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lead to progressive non-syndromic hearing loss in mice and humans21–24. In spite of the high sequence homology 
between miR-96 and miR-182/miR-183, the latter two are unable to compensate for the functional defects caused 
by the mutations in the seed sequences of miR-96. The phenotypes caused by these point mutations of miR-96 are 
considered a result of both loss- and gain-of-function effects21–24, because they not only cause loss of regulation 
of normal target genes of wild-type miR-96, but also create new downstream target genes of the mutant miR-96. 
Further examination has shown that one of the point mutations causes arrest of HC development and matura-
tion23. These data suggest that miR-96 plays a predominant role among members of the miR-183/96/182 cluster in 
inner ear function. It is uncertain whether miR-182 and miR-183 also play a significant role in mammalian inner 
ear development and function.

To understand the physiological functions of the miR-183/96/182 cluster, we generated a knockout (KO) 
mouse model using a gene trap (GT) embryonic stem cell clone, miR-183CGT/GT, in which the miR-183/96/182 
cluster gene was inactivated by a GT construct17. Previously, we showed that inactivation of the cluster results 
in syndromic retinal dystrophy with multisensory defects including a circling phenotype, typical of vestibu-
lar defect17. This result suggests that loss of function of the miR-183/96/182 cluster leads to significant func-
tional defects of the inner ear. Here, we characterize the impact of inactivation of the miR-183/96/182 cluster 
on inner-ear development and hearing functions. Our results demonstrate that loss of function of the miR-
183/96/182 cluster causes severe defects in HC differentiation, morphogenesis and function, leading to profound 
congenital syndromic deafness in mice.

Results
miR-183/96/182 cluster KO mice have severe balance defects and profound deafness. Previously, 
we showed that the miR-183/96/182 KO mice have a circling behavior as early as the first week after birth17. To further 
test the defects in balancing, we performed a swimming test on young adult (3 weeks old) KO mice, and their wild-type 
(WT) littermates. The result revealed that, while the WT control mice swam well, kept calm and never lost balance 
during the test, the KO mice lost their balance and were unable to keep their heads above the water within seconds after 
being put in the water bath, confirming a vestibular defect (Fig. 1a).

To test whether inactivation of the cluster affects hearing, we performed auditory-brain stem response (ABR) 
test in 3-week-old mice. The results showed that the KO mice had no response to acoustic stimuli, whereas the 
heterozygotes and WT controls similarly showed normal hearing thresholds (Fig. 1b). These data suggest that 
inactivation of the miR-183/96/182 cluster in the cochlea resulted in profound hearing loss.

The miR-183/96/182 cluster KO mice show severe defects in HC morphogenesis. At postnatal 
day (P) 3, the organ of Corti, and in particular the HCs, of the KO mice showed several abnormalities compared 
with WT controls. Phalloidin staining for actin filaments revealed the normal checkboard-like pattern of the HCs 
and supporting cells (SCs) in the WT reticular lamina, whilst tubulin-labelled ciliary extrusions were identifiable 
on both HCs, where they were adjacent to the bundle (known as the kinocilium), and SCs (Fig. 2a,c,e). However, 
in the KO mice, hair cell apices were abnormal, appearing circular rather than heart-shaped; and the hair bundle 
was malformed. Most HCs of the KO mice lack kinocilia, although the ciliary protrusion was retained on the SCs 
(Fig. 2b,d,f). These abnormalities were detected along the entire length of the cochlea, as indicated by comparable 
images from apical, middle and basal regions (Fig. 2b,d,f).

These abnormalities were further confirmed by electron microscopy (EM) (Figs 3 and 4). In the KO mice, the 
rows of HCs and SCs were disorganized to a small degree (Fig. 3b,c), with the apical region (Fig. 3b) more affected; 
the circular apices of the HCs were protruded (Fig. 3b,c compared to Fig. 3a; Fig. 4b compared to Fig. 4a). The 
hair bundles consisted of thin microvilli-like stereocilia of approximately equal length, reminiscent of immature 
stereociliary bundles from earlier embryonic stages (Figs 3e and 4d), in contrast to the control, where the staircase 
pattern of stereocilia was formed, the stereocilia thicker than adjacent microvilli on SCs (Figs 3d and 4c). The 
peripheral, stereocilia-free zone of the apical surface of HCs, which is visible in the WT (Fig. 3d), was substan-
tially narrower, with the hair bundle covering virtually the entire apical surface in the KO mice (Fig. 3e). These 
abnormalities were evident in both apical and basal regions (Fig. 3b,c respectively).

At higher magnification, the stereocilia could be seen to be linked by fine filaments in the KO mice (Fig. 3f), 
but the lack of staircase organization meant that tip links could not be identified. The kinocilium basal body was 
observed by transmission electron microscopy (TEM), even where a complete kinocilium was absent (Fig. 4d).

The TEM observations also showed that whereas the cytoplasm of the HC bodies was apparently lighter than 
in the SCs in WT (Fig. 4a), the density of HC cytoplasm was comparable to that of SCs in the KO mice. It was 
difficult to distinguish the cytoplasm of HCs from the SCs (Fig. 4b). The HC nuclei of the KO mice were distorted 
(Fig. 4b), when compared with the WT control (Fig. 4a). The SCs between the HCs also showed evidence of dis-
tortion in the KO cochlea (Fig. 4a,b). Furthermore, the apical filamentous cuticular plate, clearly visible in the WT 
(Fig. 4a,c), was not detectable in the KO (Fig. 4b,d).

By P18, scanning electron microscopy (SEM) showed that the HC bundles were completely lost, and HC 
apices could not be detected in the KO mice (Fig. 3h). The epithelium was composed of non-specified cell types, 
perhaps expanded SCs (Fig. 3h).

Additional phalloidin staining in P6 cochleae showed that, although most HCs in the KO mice still existed, 
they appeared, qualitatively, to be more disorganized and have some cell loss (Supplemental Fig. 1), suggesting 
that HC degeneration starts between P3 and P6.

Mechanoelectrical transduction (MET) is non-functional in the miR-183/96/182 KO 
mice. Normally, the tip links in HC bundles operate ion channels to initiate MET during deflections of the HC 
bundle25–28. The lack of a staircase pattern and tip-links in the KO mice suggest that their HCs are unable to per-
form MET. To test this hypothesis, we performed a FM1–43 dye uptake assay. Our result showed that, FM1–43, a 
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fluorescent dye that enters through functional MET channels29, failed to load in the HCs of cochlear organotypic 
cultures derived from P1 KO mice (Fig. 5b), whilst dye uptake was evident as bright fluorescence in the HCs of 
WT organotypic cultures (Fig. 5a). Thus, as predicted, the mutant HCs lack functional MET.

Stereociliogenesis related genes were upregulated in the mutant cochlear epithelium. Several 
proteins including Clic5, ezrin (Ezr), radixin (Rdx), taperin, and myosin VI have been shown to act together in 
organizing stereociliary actin filaments and their interactions with the plasma membrane30–32. Clic5, Rdx and Ezr 
are predicted target genes of miR-183/96/182 cluster (Fig. 6a–c)33,34. To test whether these genes are regulated 
by miR-183/96/182 cluster in the inner ear in vivo, we isolated total RNA from cochlear sensory epithelia of P1 
mice. Quantitative (q)RT-PCR assays showed that the expression of Clic5 (2.69 fold), Rdx (5.17 fold) and Ezr (2.99 
fold) was significantly upregulated in the cochlea of KO mice vs. WT littermate controls, suggesting that miR-
183/96/182 cluster regulates these genes in vivo; and loss of miR-183/96/182 cluster resulted in dysregulation of 
these genes (Fig. 6a–c).

The expression of other predicted target genes known to play important roles in HC develop-
ment and function was significantly up-regulated in KO mice. In addition to the above-mentioned 
protein complexes, Rac135,36, Pvrl337,38, Myo1c39,40 and Sox241–44, which are known to play important roles in inner 
ear HC development and function, are also predicted targets of the miR-183/96/182 cluster (Fig. 6d–g). And 
therefore, we included these genes in our qRT-PCR analysis. Our result showed that the expression of these genes 
was significantly upregulated [Rac1 (1.33 fold), Pvrl3 (1.21 fold), Myo1c (1.43 fold), Sox2 (2.71 fold)] in the P1 
cochlear epithelia of KO mice (Fig. 6d–g), suggesting that they are likely targeted by the miR-183/96/182 cluster 
in the cochlear sensory epithelia in vivo.

Sox2 plays an essential role in the formation of the prosensory domain and HC differentiation during inner 
ear development via transient expression in HCs before P2 but retained expression in SCs subsequently41–45. To 
examine the cellular localization and protein expression level of Sox2, we performed co-immunofluorescence 

Figure 1. Balance and hearing dysfunction in miR-183/96/182 cluster KO mice. (a) Swimming test in 3 week-
old WT and KO mice showing that a KO mouse was unable to keep its head above water. (b) Hearing test shows 
ABR threshold of WT (n = 3), heterozygote (n = 3) and KO mice (n = 5) at 3 weeks old.
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Figure 2. Confocal images of phalloidin staining and co-immunofluorescence of γ-tubulin of the apical surface 
of the cochlear sensory epithelia of P3 WT and KO mice. Phalloidin staining labels the F-actin (green) and 
anti-γ-tubulin (red) detects cilium structures. The precise arrangement of three rows of outer hair cells (OHCs) 
and one row of inner hair cells (IHCs) separated by alternating spaced supporting cells (SCs) in apical (a-a2), 
middle (c-c2) and basal turn (e-e2) is visible in the cochlea of WT mice. a1, c1 and e1 are images of γ-tubulin 
staining only, while a2, c2, e2 are single-channel images of phalloidin staining. γ-tubulin staining reveals a single 
kinocilium located on the mediolateral side of each HC at the vertex of the V-shaped stereocilia bundle (arrows 
in a,c,e) and there is also a cilium visible on each supporting cell apex. KO mice have abnormal HC spacing and 
alignment, their apices appear circular (b-b2, d-d2, f-f2); most mutant HCs lack kinocilia, although cilia similar 
to that in WT are visible on SCs. The scale bar = 10 μm.
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of Sox2 and a HC-specific marker, Myo7a, in P1 cochlear sensory epithelia. Similar results were observed in the 
cochleae of 3 KO and 2 WT mice. Representative qualitative images are illustrated in Fig. 7. Our result showed 
that Sox2 staining in the nuclei of HCs appeared qualitatively more intense in the KO (Fig. 7f) vs. WT mice, espe-
cially in IHC (Fig. 7e), but there is no apparent qualitative difference in the SCs. This is consistent with increased 
expression of Sox2 in the cochlear epithelia of KO mice at mRNA level by qRT-PCR analysis (Fig. 6g) and suggests 
that the miR-183/96/182 cluster targets Sox2 in HCs in vivo. The staining of Myo7a appeared qualitatively much 
weaker in KO HCs, compared to WT controls, indicating impaired HC differentiation or maturation in KO mice. 
Intriguingly, in contrast to WT controls, the SCs surrounding the HCs in the greater and lesser epithelial ridges 
(GER and LER) appeared to be positive to Myo7a staining (arrowheads in Fig. 7b,d).

Discussion
miRNAs are quantitative regulators of gene expression. One miRNA often targets multiple protein-coding genes 
in the same pathway or functional network, and imposes modest regulation on each of them. This contributes to 
the maintenance of the homeostasis of the pathway/network under physiological conditions. Defects in a miRNA 
can thus result in simultaneous dysregulation of multiple genes, leading to significant functional consequences 
when the composite impact passes a threshold17,46–50. Here we provide evidence that the miR-183/96/182 cluster 

Figure 3. Scanning electron microscopy (SEM) of organ of Corti in WT and miR-183/96/182 cluster KO 
mice. a–f: P3 cochlea of WT (a,d) and KO (b,c,e,f) mice. g,h: P18 WT (g) and KO (h) mice. At P3, at low 
magnification (a–c), HCs in the WT mice are organized into the normal three rows of OHCs and one row 
of IHCs (a). The apical region of the cochlea is shown here. In the KO mice, the HCs appear dis-organized 
(b, apical turn; c, basal turn), with apical turn more severely affected (b). At higher magnification (d–f), the 
apical surface of P3 WT mice shows the normal staircase pattern of the stereocilia bundle, with additional 
shorter stereocilia, stereocilia-free zone (*) and kinocilium (arrow), typical of this age (d). Inset in (d): detailed 
view of ranked stereocilia in the WT with tip-link-like filaments connecting the shorter and taller stereocilia 
(arrowheads). In the KO mice, the staircase is undifferentiated; the stereocilia are all of a similar height and the 
bundle occupies virtually the whole apical surface with a reduced stereocilia-free zone at the periphery (* in e). 
Closer inspection of the stereocilia reveals links near the tips (arrowhead) and sides (arrow) of the bundle, but 
no distinct tip links are visible (f). By P18, the stereocilia are absent in KO mice (h) and the HCs replaced by a 
non-specific cell type in contrast to mature hair bundles in WT mice (g). Scale bars: (a,c,g,h = 15 μm, b = 12 μm, 
d,e = 2 μm,f = 300 nm).
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provides a global regulation of the differentiation, morphogenesis and functional maturation of HCs and organ-
ization of the organ of Corti.

Our data show that, although HCs are generated, loss of function of the miR-183/96/182 cluster results in a 
multitude of defects in their development and function: (i) HCs are misaligned within the cochlear epithelium; 
(ii) the cuticular plate is not formed; the HC apex is protruded; and the stereociliary bundle fails to develop to 
maturity; (iii) there is loss of MET function; and (iv) by P18, the HCs have completely degenerated; the KO mice 
have a profound hearing loss. These data confirm that the miR-183/96/182 cluster plays important roles in the 
differentiation, morphogenesis and function of inner ear HCs, and extend previous findings of Weston et al.7,51 
and Fan et al.52 by providing more structural and expression data relating to the effects of loss of the cluster spe-
cifically in the inner ear.

A point mutation in the seed sequence of miR-96 has been reported to cause defects in the maturation of 
stereociliary bundles in the Dmdo/Dmdo mice22. In these mice, the stereocilia form a partially differentiated 

Figure 4. Transmission electron microscopy of organ of Corti sections in P3 WT (a,c) and the miR-183/96/182 
cluster KO mice (b,d). In WT mice (a), outer hair cells (HC) are separated by phalangeal projections of Deiter’s 
cells (SC); their cytoplasm is lighter than that of surrounding SCs, and nuclei (N) are elliptical. The apices of 
the HCs are flat. In the KO (b), the HC cytoplasm is of equal density to SCs; their nuclei (N) are irregular; the 
apices protrude upwards; and the SCs are poorly defined and irregular. The hair bundles in the WT (c) consist 
of a staircase of stereocilia (S) extending from the cuticular plate (Cp); the hair bundle stereocilia are thicker 
than microvilli (M) on the adjacent SCs, whereas in the KO (d), the stereocilia (S) are as thin as adjacent SC 
microvilli (M), and extend from the bulbous protruding apex of the cell where there is a kinocilium basal body 
remnant (arrowhead). Scale bars A, B = 5 um; C, D = 2 um.
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bundle22,23, but development is arrested around P023. These defects are considered to be a result of loss of function 
of the wild-type miR-96, as well as the gain-of-function effect of the mutant miR-96, which creates abnormal tar-
get genes not normally targeted by the wild-type miR-9622,23. In spite of their high sequence homology to miR-96, 
miR-183 and miR-182 fail to compensate/rescue the effects caused by the point mutation of miR-96. Therefore, it 
is uncertain whether miR-183 and miR-182 have a functional significant role in HC development and differentia-
tion in mammalian cochlea. Comparing to the Dmdo/Dmdo mice, the hair bundle defects in our miR-183/96/182 
cluster KO mice are apparently more severe, as the apical surface of HCs retains a more immature appearance 
with an unranked cluster of microvilli-like stereocilia, the apical surface is protruded above the HC cell body, and 
the overall organization of the organ of Corti is also affected. These data suggest that complete loss of function 
of the miR-183/96/182 cluster resulted in more severe defects in inner ear HC development and differentiation 
than the point mutation of miR-96 alone, and that miR-183 and miR-182 may also play a significant role in HC 
development and functional differentiation. This is consistent with the observation in zebrafish that simultaneous 
knockdown of two or three members of the cluster results in an additive inhibitory effect on HC formation20. 
Creation and characterization of miR-182/miR-183 double KO and miR-96 single KO mice are needed to further 
reveal their physiological functions in inner ear HC development and functions.

As we were preparing this manuscript, Fan et al. reported an independent conventional knockout mouse 
of the miR-183/96/182 cluster by homologous recombination52. Similar to what we described here in the miR-
183CGT/GT KO mice both temporally and morphologically, the conventional KO mice also showed severe defects 
in the stereociliary bundle development and HC maturation, misalignment of HCs and profound hearing loss52. 
These striking similarities between our miR-183CGT/GT KO and the independently-created conventional miR-
183/96/182 cluster KO mice further strengthen the conclusion that miR-183/96/182 cluster plays an essential 
role in HC development and function. This also confirms that the miR-183CGT/GT model is a functional KO of the 
miR-183/96/182 cluster, arguing against the suggestion that the miR-183CGT allele could be hypomorphic52. This 
is further supported by our initial characterization of the expression of miR-183/96/182 cluster in the sensory 
organs of the miR-183CGT/GT mice17. We demonstrated that, resembling the complete inactivation of this cluster 
in the retina, expression of miR-183, −96 and −182 in WT cochlea was at least 30-, 25- and 21-fold higher than 
in the cochlea of miR-183CGT/GT mice by qRT-PCR analysis17.

Coupled with the morphological studies, our target prediction and gene expression analysis suggest that the 
miR-183/96/182 cluster imposes a global regulation on the differentiation and function of the organ of Corti 
through simultaneous regulation on multiple genes involved in various aspects of the development of HCs. Hair 
cells have complex cytoskeletal networks, especially in the apical part of the cell. The ezrin-radixin-moesin (ERM) 
family plays important roles in the morphogenesis of the actin cytoskeleton in various cell types53–55, including 
HCs31,56. In HCs, they interact with Clic5 to form a complex at the ankle of stereocilia that may stabilize the link-
age between plasma membrane and actin cytoskeleton30. In the miR-183/96/182 cluster KO mice, upregulation 
of the ERM genes, Rdx and Ezr, as well as Clic5 in the cochlear epithelia may have interrupted the balance of gene 
expression and the development of the apical part of HCs. This perhaps contributes to the failure of cuticular 
plate formation, the apical surface protruding from the cell body and the stereocilia retaining immature phe-
notype. Supporting this notion, Fan et al. reported that the conventional KO mice had increased and disorgan-
ized acetylated microtubules below the apical surface of the hair cells where the cuticular plate would otherwise 
form52.

Figure 5. FM1–43 dye uptake in P1 WT (a,c) and KO mice (b,d). Panel a shows dye uptake in the middle turn 
of WT cochlear OHCs. There was also uptake in the IHCs in WT; however, it is invisible in this picture because 
IHCs were in different focus plane. No uptake in KO cochlear hair cells (b). Panels c and d are DIC images of 
same regions of HC epithelium as shown in a and b, respectively. Dotted lines in b & d delineate the medial 
(lower) and later (upper) boundaries of the organ of Corti. The scale bars = 20 μm.
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Rac1 is a member of the Rho family small GTPases, and has been shown to regulate planar cell polarity (PCP) 
and morphogenesis of the stereociliary bundle of HCs35. Deletion of Rac1 in the otic epithelium resulted in a 
reduced number of, and severely shortened HCs, with defects in PCP and morphogenesis of the bundle35. Our 
data suggest that loss of the miR-183/96/182 cluster results in dysregulation of Rac1 in P1 cochlear sensory epi-
thelia, which may contribute to the phenotypes in the stereociliary development in the KO mice.

Pvrl1 and 3, also known as Nectin-1 and −3, are immunoglobin-like adhesion membrane molecules. Pvrl1 is 
expressed in HCs, while Pvrl3 is expressed in SCs. This mutually exclusive expression pattern is involved in the 

Figure 6. Sequence alignment and qRT-PCR analysis of predicted target genes of the miR-183/96/182 cluster 
in P1 cochlear epithelia. Rel exp (to 18 s rRNA): relative expression level normalized to 18 s rRNA as an 
endogenous loading control. n = 4 for WT; n = 3 for KO.
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HC-SC interaction and the development of the checkerboard-like cellular pattern of the cochlear sensory epithe-
lium37,38. Increased expression of Pvrl3 in the cochlea epithelia of KO mice suggest that miR-183/96/182 cluster 
is likely to regulate Pvrl3 in HCs in vivo and affect HC-SC interaction and cellular organization in the cochlear 
epithelium.

A major aspect of HC function is mechanoelectrical transduction. Our data showed that, in the miR-
183/96/182 KO mice, MET no longer functions. The absence of a mature staircase of ranked stereocilia means 
that the tip-link complex that underlies transduction57 may not be formed; and indeed, specific tip links have 
not been identifiable here. Myo1c is one of several unconventional myosins that have been implicated in the slow 
form of adaptation in HC MET by regulating tip-link tension58–64. Myo1c upregulation in auditory epithelia of 
the miR-183/96/182 cluster KO mice suggests a possible role of these miRNAs in regulating tip-link function and 
adaptation.

Sox2 has a dual role in the specification of sensory competence and HC differentiation43,44. Its early expression 
is required to formation of the prosensory domain and HCs41–43. However, its subsequent downregulation in 
HCs must occur to allow HCs to become fully differentiated43,44. In mice, after P2, its expression is undetecta-
ble in HCs but retained in SCs41,45. Increased expression of Sox2 in the HCs of P1 KO mice suggests that loss of 
miR-183/96/182 cluster contributes a delayed downregulation of Sox2 in HCs, and consequently, may affect the 
functional differentiation of HCs.

We anticipate that many other genes are also regulated by the miR-183/96/182 cluster and contribute to the 
overall phenotype in HC development and function. A genome wide analysis of gene expression changes in 
HCs of this mutant model would provide further information and deeper understanding of the roles of miR-
183/96/182 cluster in HC development and functions. Phenocopying the mutant phenotype by overexpressing 
some of these target genes would help confirm their roles in mediating the functions of the miR-183/96/182 
cluster in HCs.

The observation of apparent ectopic expression of Myo7a in cells in the GER and LER surrounding the HCs 
is intriguing. Increasing evidence has shown that a subset of SCs in these regions may act as cochlear progenitor 
cells with a capacity of regeneration and differentiation into HCs in neonatal mice, especially after damage65–68. 
In our P1 KO mice, the HCs are morphologically and functionally defective. It is reasonable to hypothesize that, 

Figure 7. Immunostaining of cochlear sensory epithelium with anti-Sox2 (red) and Myo7a (green) antibodies 
in P1 WT (a,c,e) and KO mice (b,d,f). White arrows in e and f show Sox2 staining in the nuclei of OHCs; yellow 
arrows show that in the nuclei of IHCs. White arrowheads in b and d point to the “ectopic” staining of Myo7a in 
a subgroup of cells in the GER and LER regions. Similar results were observed in the cochleae from 3 KO and 2 
WT mice.
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through unknown mechanisms, defective HCs may have signaled and induced progenitor cells to generate more 
HCs; the ectopic expression of Myo7a has reflected this attempt. However, extensive follow-up studies will be 
needed to test this hypothesis.

In conclusion, we have demonstrated major effects of the miR-183/96/182 cluster in the development of the 
organ of Corti and also HCs. Further characterization of HC development and function in mutant mice with 
single or double knockout of members of the cluster69,70 is therefore warranted.

Materials and Methods
Mice. Animal care and husbandry were handled in accordance with the National Institute of Health (NIH) 
guidelines. All protocols were approved by the Institutional Animal Care and Use Committee, Wayne State 
University. The miR-183/96/182 cluster KO mice, miR-183CGT/GT, are on a 129S2/BL6-mixed background and 
were originally derived from a gene-trap embryonic stem cell (ESC) clone as described previously17,71. Neonatal 
(P1~6) and 3 weeks old mice KO mice, their heterozygous (miR-183CGT/+) and WT littermates (miR-183C+/+) 
were used in this study. At least three mice per genotype were used in each experiment. The age and number of 
mice used for each experiment are further specified in the method description below and in the text and figure 
legends.

Swimming test. Young adult (3 weeks old) KO mice and their WT littermates were gently placed in a tank 
filled with warm tap water and the swimming behavior recorded by a camera of iPhone8 (Apple). They were 
rescued from the water within 15 seconds (s) after they lost their balance or were unable to keep their heads 
above the water. The duration from the time when the mice were put in water to when they lost their balance 
was recorded. All WT mice kept calm and never lost their balance even after 1 minute in water; accordingly, the 
duration for all WT mice was arbitrarily recorded as 1 minute for quantification purpose.

ABR recording. ABR recording was performed as previously described72. Briefly, 3 weeks old mice were anes-
thetized with ketamine (100 mg/kg) and xylazine (20 mg/kg) and placed in a soundproof chamber (Tracoustical, 
Inc., Austin, Texas) during testing. Their body temperature was maintained by placing them on a homeothermic 
heating pad. ABR testing was carried out using a TDT system (Tucker-Davis Technologies, Alachua, Florida). 
Platinum subdermal needle electrodes (MFI Medical Equipment, Inc., San Diego, CA) were inserted at the ver-
tex of the head, and ventrolateral to both ears. The mice were presented with 4–28KHz pure tone stimuli at an 
intensity starting at 100 decibel sound pressure level (dB SPL) and decrementing in 10-dB steps; this sequence 
was repeated in 5-dB steps until the lowest intensity that evoked a reproducible ABR waveform (peaks I–IV) was 
detected.

Immunofluorescence. The inner ears of P1 pups were dissected out from the temporal bone. After removal 
of the stapes, a small hole was made to open the apex; the cochlea was fixed by perfusion through the oval window 
and the hole at the apex with 4% paraformaldehyde (PFA) in 1X PBS solutions at 4 °C, and then left in the fixative 
overnight. After 3 rinses with 1XPBS, the cochlear sensory epithelium was dissected out. For immunostaining of 
kinocilia, the tissue was soaked in blocking solution (5% normal donkey serum and 0.1% Triton X-100 in 1X PBS) 
at room temperature for one hour (h), then incubated with anti-acetylated γ-tubulin antibody (Sigma. 1:250) 
in blocking solution at 4 °C overnight. After three 15-minute (min) washes with PBS containing 0.1% Triton 
X-100, a Alexa Fluor-568-conjugated secondary antibody (Invitrogen) was applied together with Alexa Fluor-488 
Conjugated phalloidin (Invitrogen), which stains actin-rich structure, stereocilia, for 1 h at room temperature. 
After 3 washes with 1X PBS, the tissue was mounted on slide and images were taken with a confocal microscope 
(Leica TCS SP8).

For immunofluorescence of cryosections, inner ears of P1 mice (3 KO and 2 WT) were dissected out and fixed 
with 4% PFA in 1X PBS by perfusion through the oval window and a hole opened at the apex and incubation for 
1 h at room temperature on a shaker. After washing with 1X PBS for 15 mins, three times, the inner ears were 
incubated consecutively in 10%, 15%, 20%, 25% and 30% sucrose in 1X PBS for 30 mins at each concentration at 
room temperature and then kept in 30% sucrose in 1X PBS at 4 °C overnight. Then the inner ears were transferred 
to OCT and kept at 4 °C, overnight. After degassed with vacuum, the inner ear was frozen and cryosectioned at 
12 μm thickness. After blocking, the cryosections were stained with anti-Myo7A (Proteus Biosciences Inc.. 1:500) 
and anti-Sox2 (Santa Cruz Biotechnology. 1:250) at room temperature for 2 h. After washing with 1XPBS, the 
sections were incubated with secondary antibodies (donkey anti-goat Alexa Fluor 546 and donkey anti-rabbit 
Alexa Fluor 488 secondary antibodies. Invitrogen. 1:1000) for 1 h at room temperature. The images were taken 
with a confocal microscope (Leica TCS SP8).

Electron microscopy. Cochleae of P3 and P18 mice were excised from the temporal bone and fixed by per-
fusion as described above using 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer containing 2 mM calcium 
chloride and incubation for 2 h. They were stored in 1/10th fixative until further processing. For postfixation, 
the samples were washed in sodium cacodylate buffer and then immersed in 1% osmium tetroxide in sodium 
cacodylate for 1 h.

For SEM, cochleae were dissected and then prepared using the OTOTO technique73. Briefly, segments were 
incubated in alternating solutions of osmium tetroxide (3X, 2 h) and saturated thiocarbohydrazide (2X, 20 mins) 
with six washes in water between each change. They were subsequently dehydrated through an ethanol series and 
critical point dried using a Polaron drier, mounted on platinum stubs using adhesive carbon pads, and examined 
in a Hitachi S4500 field emission SEM at 5 kV.

For TEM, samples were fixed and dehydrated as for SEM, but then embedded in Spurr’s resin73, sectioned at 
70–100 nm and the sections collected on copper grids. Grids were stained in uranyl acetate and lead citrate and 
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examined in a JEOL 100 S TEM. Images were recorded on Acros Neopan 35 mm negatives and digitized using a 
HP Canonscan 9000 negative scanner.

Cochlear organ culture and FM1–43 labeling. The function of the MET channels of mouse cochlea was 
assessed by FM1–43 labeling as described previously29. Briefly, cochlear sensory epithelia of P1 mice were carefully 
dissected out in cold Hepes-buffered Hanks’ balanced salt solution (HBHBSS. Sigma) and cultured in DMEM/
F12 with 7% Fetal calf serum (FCS) (Fisher Scientific) and 5 mg/ml ampicillin (Sigma) on Cell-Tak-coated glass 
coverslips in Mat-Tk dishes (MatTek Corporation) at 37 °C. After overnight culture, the cochlea was rinsed briefly 
in HBHBSS and then dipped in HBHBSS containing 3 µM FM1–43 (ThermoFisher Scientific) for 10 seconds (s) 
and rinsed 3 times in fresh HBHBSS solution. The coverslip was immediately mounted on slide and imaged with 
fluorescent light microscope (Leica) equipped with epifluorescence optics and FITC filters (488 nm excitation, 
520 nm emission).

RNA isolation and qRT-PCR. Cochlear epithelia from P1 mice were dissected in HBHBSS, and quickly 
transferred to RNAlater (Ambion/ThermoFisher Scientific). Total RNA was prepared using RNeasy micro kit 
(Qiagen) following manufacturer’s instructions. On-column DNase I treatment was performed to avoid traces of 
DNA contamination. qRT-PCR assays of protein-coding genes were performed using QuantiFast SYBR Green 
RT-PCR kit and QuantiTect primers (Qiagen) with 18 s rRNA as an endogenous loading control as we described 
previously17,74–76. The relative expression level of a gene of interest was normalized to 18 s rRNA. Briefly, the cycle 
threshold (Ct) value of the gene of interest (Ctgoi) was normalized to the Ct value of 18 s rRNA (Ct18s rRNA) and 
was calculated as DCt = Ctgoi-Ct18s rRNA. Subsequently, the relative expression level of the gene of interest was 
calculated as 2−DCt.

Statistical analysis. All data are shown as mean ± SEM. Two-tailed student t test was performed in the 
quantitative comparison in the swimming test. Mann-Whitney test (one-tailed) was employed to test the sta-
tistical significance between KO mice and WT controls in the qRT-PCR analysis using the GraphPad Prism 6 
software (GraphPad Software, Inc., La Jolla, CA). Since this is a simple comparison between KO and WT controls, 
no multiple test correction was employed in the p-value calculation.
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